Urban Pedestrian Behaviour Modelling using Natural Vision and Potential Fields

Pavan Vasishta, Dominique Vaufreydaz, Anne Spalanzani, CHROMA Team
Inria Grenoble, France
Why do we need this?

Increasing situational awareness on an urban street – getting to level 3
Natural Vision?

- Natural Vision – “...human behaviour in wanting to move in a direction that interests them the most in their field of view …” [3]
- Pedestrian behaviour is a function of the built environment made up of positive and negative attractors
- Points of Interest (POI) – “…Monuments, places of public interest, public transportation…stores, restaurants, etc…” [3]
How do we model this?

Potential fields [4]

- In a structured urban environment, for legal crossings to occur, certain assumptions are made:
 - The edges of the road repel pedestrians.
 - A cross-walk acts as a conduit between the two sides of the street.
 - The road acts as a barrier for crossing, repelling pedestrians towards the side-walks.
 - Static and Dynamic obstacles in the scene are repulsive in nature.
 - Side-walks offer no resistance to pedestrian movement.
 - Points of Interest are a reason for pedestrians to cross.
Activity modeling and abnormality detection dataset [6]

- Contains Points of Interest at (1), (2), (3) and (4)
- Dynamic obstacles in the form of cars and bicycles
- Captures pedestrian movement
Results

TABLE I: Quantitative analysis of trajectories within predicted regions

<table>
<thead>
<tr>
<th>Case</th>
<th>Nb Trajectories</th>
<th>A* Predicted zone</th>
<th></th>
<th>Extended zone (40 cms)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inside zone (%)</td>
<td>Outside zone (%)</td>
<td>Inside zone (%)</td>
<td>Outside zone (%)</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>84.11</td>
<td>15.88</td>
<td>96.88</td>
<td>3.11</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30.07</td>
<td>69.92</td>
<td>88.17</td>
<td>11.82</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>29.10</td>
<td>70.89</td>
<td>51.49</td>
<td>48.50</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>68.48</td>
<td>31.51</td>
<td>77.43</td>
<td>22.56</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>72.38</td>
<td>27.61</td>
<td>83.26</td>
<td>16.73</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>39.63</td>
<td>60.36</td>
<td>50.26</td>
<td>49.73</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>76.79</td>
<td>23.20</td>
<td>83.28</td>
<td>16.71</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>64.67</td>
<td>35.32</td>
<td>69.98</td>
<td>30.01</td>
</tr>
</tbody>
</table>
Problems it will help solve

- Recognizing danger areas in the observed scene
- Better prediction of pedestrian behaviour
- Illegal pedestrian crossings
For more information…

Come see my poster 😊

References: